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Abstract. We study soliton gauge states in the spectrum of bosonic string compatified on torus. The
enhenced Kac-Moody gauge symmetry, and thus T-duality, is shown to be related to the existence of these
soliton gauge states in some moduli points.

1 Introduction

String duality [1] has been the subject of active research
for the last few years. The five consistent perturbative
string theories are now known to be related to each other
through various duality symmetries. It is believed that
they are merely different moduli points of a single un-
derlying theory termed M-theory. The best known string
duality is the T-duality which can be understood pertur-
batively [2]. T-duality relates a string theory in a back-
ground with large volume to another string theory in a
background with small volume. For example, it has been
shown that the Heterotic E8 ⊗ E8 and SO(32) theories
sit at different points, which are T-dual to each other, of
the moduli space of the same Heterotic theory below ten
dimension [3].

For the compatified bosonic string, the discrete T-
duality group were shown to be the residual Weyl sub-
group of the enhenced Kac-Moody gauge symmetry [2].
On the other hand, it has been known that space-time
gauge symmetry of uncompatified string is related to the
existence of gauge states in the spectrum [4]. For the 10D
Heterotic string, the Heterotic gauge states [5] are respon-
sible for the massless E8 ⊗E8 or SO(32) gauge symmetry
and are used to predict the existence of an infinite number
of massive Einstein-Yang-Mills type gauge symmetry. For
the toy 2D string, the discrete gauge states [6] are respon-
sible for the w∞ symmetry of the Liouville theory. It is
thus of interest to understand the gauge state structure of
the compatified string theory, and study their relation to
the enhenced Kac-Moody gauge symmetry.

In this paper, for simplicity, we will study gauge states
of closed bosonic string compatified on torus. In addition
to the usual gauge states, we will discover soliton gauge
states (SGS) in the spectrum of some moduli points. These
gauge states and SGS form a realization of enhenced Kac-
Moody gauge symmetry group in the gauge state sector of
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the spectrum. Since T-duality group is the Weyl subgroup
of the enhanced gauge group, SGS can be considered as
the origin of the discrete T-duality group. In Sect. 2, we
derive massless gauge states of bosonic string compatified
on R25⊗T 1 at self-dual point R =

√
2, and show that they

form a representation of the enhenced SU(2)R ⊗ SU(2)L

gauge group. In Sect. 3, we generalize the calculation to
R26−D ⊗ TD and give examples at some moduli points.
Section 4 is devoted to the discussion of massive SGS. We
will find that there is an infinite number of massive SGS
which exists at some moduli points. The existence of these
massive SCS implies that there is an infinite enhenced
gauge symmetry of compatified string theory. Finally a
brief conclusion is given in Sect. 5.

2 Soliton gauge state on R25 ⊗ T 1

In the simplest torus compatification, one coordinate of
the string was compatified on a circle of radius R [7]

X25(σ + 2π, π) = X25(σ, π) + 2πRn . (2.1)

Singlevaluedness of the wave function then restricts the
allowed momenta to be p25 = m/R with m,n ∈ Z. The
mode expansion of the compatified coordinate for right
(left) mover is

X25
R =

1
2
x25+

(
p25 − 1

2
nR

)
(r−σ)+i

∑
r 6=0

1
r
α25

r e
−ir(r−σ) ,

(2.2)

X25
L =

1
2
x25+

(
p25 +

1
2
nR

)
(r−σ)+i

∑
r 6=0

1
r
α25

r e
−ir(r+σ) .

(2.3)
We have normalized the string tension to be 1

4πT = 1 or
α′ = 2. The Virasoro operators can be written as

L0 =
1
2

(
p25 − 1

2
nR

)
+

1
2
pµ2

+
∞∑

n=1

α−n · αn , (2.4)
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L̃0 =
1
2

(
p25 +

1
2
nR

)
+

1
2
pµ2

+
∞∑

n=1

α̃−n · α̃n , (2.5)

and

Lm =
1
2
α2

0 +
∞∑

−∞
αm−n · αn , (2.6)

L̃m =
1
2
α̃2

0 +
∞∑

−∞
α̃m−n · α̃n (m 6= 0) (2.7)

where
α25

0 = p25 − 1
2
nR ≡ p25

R , (2.8)

α̃25
0 = p25 +

1
2
nR ≡ p25

L , (2.9)

and the 25d momentum is αµ
0 = α̃µ

0 = pµ ≡ kµ. In the old
covariant quantization of the theory, in addition to the
physical propagating states, there are four types of gauge
states in the spectrum

I.a |ψ〉 = L−1|χ〉 where Lmχ〉 = 0 , (L̃m − δm)|χ〉 = 0 ,
(m = 0, 1, 2, . . .) (2.10)

II.a |ψ〉 =
(
L−2 +

3
2
L2

−1

)
|χ〉 where (Lm + δm)|χ〉 = 0 ,

(L̃m − δm)|χ〉 = 0; , (m = 0, 1, 2, . . .) (2.11)

and by interchanging all left and right mover operators,
one gets I.b and II.b states. Type II states are zero-norm
gauge states only at critical space-time dimension. We will
only calculate type a states. Similar results can be easily
obtained for type b states. For type I.a state, the m = 0
constraint of (2.10) gives

M2 =
m2

R2 +
1
4
n2R2 +N + Ñ − 1 , (2.12)

N − Ñ = mn− 1 (2.13)

where N ≡ ∑∞
n=1 α−n · αn and Ñ ≡ ∑∞

n=1 α̃−n · α̃n. For
massless M2 = 0 states, N + Ñ = 0 or 1. The solutions of
(2.12) and (2.13) are

N = 0 , Ñ = 1 , m = n = 0 (any R) (2.14)

N = Ñ = 0 , m = n = ±1 R =
√

2 . (2.15)

Equation (2.15) gives us our first SGS. It is easy to write
down the explicit form of |χ〉 and |ψ〉, and impose the m 6=
0 constraints of (2.10). There are also a vector and a scalar
gauge states in (2.14). Similar results can be obtained for
the type I.b state. In this case, m = −n = ±1. There
is no type II solution in the massless case. We note that
there are massless soliton gauge states only when R =

√
2

which is known as self-dual point in the moduli space. The
vertex operators of all gauge states are calculated to be

kµθν∂X
µ
R∂X

ν
Le

ikx; L ↔ R, (2.16)

kµ∂X
µ
R∂X

25
L eikx, (2.17)

kµ∂X
µ
L∂X

25
R eikx, (2.18)

kµ∂X
µ
Re

±i
√

2X25
L eikx, (2.19)

kµ∂X
µ
Le

±i
√

2X25
R eikx. (2.20)

It is easy to see that the three gauge states of (2.18) and
(2.20) form a representation of SU(2)R Kac-Moody alge-
bra. Similarly, (2.17) and (2.19) form a representation of
SU(2)L Kac-Moody algebra. The vector gauge states in
(2.16) are responsible for the gauge symmetry of graviton
and antisymmetric tensor field. We see that the self-dual
point R =

√
2 is very special even from the gauge sector

point of view.

3 Soliton gauge state on R26−D ⊗ T D

In this section we compatify D coordinates on a D-dimen-
sional torus TD ≡ RD

2πΛD

~X(σ + 2π, π) = ~X(σ, π) + 2π~L. (3.1)

with

~L =
D∑

i=1

ni

(
Ri

~ei√
2

)
∈ ΛD (3.2)

where ΛD is a D-dimensional lattice with a basis
{
R1

~e1√
2
,

R2
~e2√

2
, . . . , RD

~eD√
2

}
. We have chosen |~ei|2. The allowed

momenta ~p take values on the dual lattice of ΛD

~p =
D∑

i=1

mi

(
1
Ri

√
2~e∗

i

)
∈ (ΛD)∗. (3.3)

The basis of (ΛD)∗ is
{

1
R1

√
2~e∗

1,
1

R2

√
2~e∗

2, . . . ,
1

RD

√
2~e∗

D,
}

and we have ~ei ·~e∗
j = δij . The mode expansion of the com-

patified coordinates is

~XR =
1
2
~x+

(
~p− 1

2
~L

)
(τ − σ) + i

∑
r 6=0

1
r
α25

r e
−ir(τ−σ) ,

(3.4)

~XL =
1
2
~x+
(
~p− 1

2
~L

)
(τ+σ)+i

∑
r 6=0

1
r
α25

r e
−ir(τ+σ) , (3.5)

The right and left momenta are defined to be ~pR =(
~p− 1

2
~L
)

and ~pL =
(
~p+ 1

2
~L
)

It can be shown that the
2D-vector (~pR, ~pL) build an even self-dual Lorentzian lat-
tice ΓD,D, which guarantees the string one loop modular
invariance of the theory [8]. The moduli space of the the-
ory is

µ =
SO(D,D)

SO(D) × SO(D)
/O(D,D,Z) (3.6)

where O(D,D,Z) is the discrete T-duality group and dim
µ = D2. To complete the parametrization of the mod-
uli space, one needs to introduce an antisymmetric tensor
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field Bij in the bosonic string action. This will modify the
right (left) momenta to be

~pR =
(
~pB − 1

2
~L

)
, (3.7)

~pL =
(
~pB +

1
2
~L

)
(3.8)

where

~pB =
∑
ij

(
mi

1
Ri

√
2~e∗

i − nj
1√
2Ri

Bij~e
∗
i

)
. (3.9)

We are now ready to discuss the gauge state. As a first
step, we restrict ourselves to moduli space with Bij = 0.
For the type I.a state, the m = 0 constraint of (2.10) for
massless states gives

N + Ñ + ~p2 +
1
4
~L2 = 1, (3.10)

N − Ñ =
∑

i

mini − 1. (3.11)

It is easy to see N + Ñ = 0 or 1. For N + Ñ = 1,mi =
ni = 0, we have trivial gauge state solutions. SGS exists
for the case N = Ñ = 0 and the following moduli points

Ri =
√

2, eI
i =

√
2δI

i (i = 1, 2, . . . , d) (3.12)

with mi = ni = ±1, and mj = nj = 0 for d < j ≤ D. In
each case, the gauge states and SGS form a representation
of SU(2)d algebra. Similar results can be easily obtained
for the type I.b SGS. As in Sect. 2, there is no massless
type II SGS. We now discuss Bij 6= 0 case. For illustration,
we choose D = 2. In this case Bij = Bεij , and one has
four moduli parameters R,R2, B, and ~e1 · ~e2. For type I.a
state, the m = 0 constraint of (2.10) gives

N + Ñ + ~p2
B +

1
4
~L2 = 1, (3.13)

N − Ñ = m1n1 +m2n2 − 1. (3.14)

SGS exists only for N = Ñ = 0. For the moduli point

R1 = R2 =
√

2, B =
1
2
, ~e1 = (

√
2, 0),

~e2 =

(
−
√

1
2
,

√
3
2

)
, (3.15)

one gets six SGS with momenta ~pR being the six root
vectors of SU(3)R. Together with two other trivial gauge
states corresponding to N = 0, Ñ = 1, they form the
Frenkel-Kac-Segal [9] representation of SU(3)k=1 Kac-
Moody algebra. Note that ~e1, ~e2 are the two simple roots

of SU(3) and ~e∗
1 =

(√
1
2 ,
√

1
6

)
, ~e∗

2 =
(
0,
√

2
3

)
. The six

sets of winding number are (m1, n1,m2, n2) = (1, 1, 0, 0),
(−1,−1, 0, 0), (0, 0, 1, 1), (0, 0,−1,−1), (1, 1, 1, 0), (−1,
−1, −1, 0). Similar results can be obtained for type I.b
SGS. The gauge states (including SGS) thus form a rep-
resentation of enhenced SU(3)R ⊗ SU(3)L at the moduli
point of (3.15). In general, we expect that all enhenced
Kac-Moody gauge symmetry at any moduli point should
have a realization on SGS.

4 Massive soliton gauge state

In this section we derive the massive SGS at the first mas-
sive level M2 = 2. We will find that SGS exists at infinite
number of moduli points. One can also show that they
exist at an infinite number of massive level. The existence
of these massive SGS implies that there is an infinite en-
henced gauge symmetry structure of compatified string
theory. For type I.a state, the m = 0 constraint of (2.10)
gives

m2

R2 +
1
4
n2R2 +N + Ñ = 3, (4.1)

N − Ñ = mn− 1. (4.2)

which implies N + Ñ = 0, 1, 2, 3. Equation (4.1) and (4.2)
can be easily solved as following:

1. N + Ñ = 3 : m = n = 0, N = 1, Ñ = 2, any R. (4.3)

2. N + Ñ = 2 : mn = 1, N = Ñ = 1, R =
√

2, (4.4)

mn = −1, N = 0, Ñ = 2, R =
√

2.

3. N + Ñ = 1 : mn = 2, N = 1, Ñ = 0,
R = 2, 1.( T-duality)

mn = 0, N = 0, Ñ = 1, (4.5)

R =
|m|√

2
,
2
√

2
|m| .(T-duality)

4. N + Ñ = 0 : mn = 1, N = Ñ = 1,
R = 2 ±

√
2(T − duality)

(4.6)

where we have included a T-duality transformation R →
2
R for some moduli points. Note that (4.5) tells us that
massive SGS exists at an infinite number of moduli point.
For type II.a state, the m = 0 constraint of (2.11) gives

m2

R2 +
1
4
n2R2 +N + Ñ = 2, (4.7)

N − Ñ = mn− 2, (4.8)

which implies N + Ñ = 0, 1, 2. Equation (4.7) and (4.8)
can be solved as following:

1. N + Ñ = 2 : m = n = 0, N = 0, Ñ = 2, any R. (4.9)

2. N+Ñ = 1 : mn = 1, N = 0, Ñ = 1, R =
√

2 : (4.10)

3. N + Ñ = 0 : mn = 2, N = Ñ = 0,
R = 2, 1.(T-duality) (4.11)

The vertex operators of all SGS can be easily calculated
and written down. Similar results can be obtained for type
b gauge state. One can also calculate propagating soliton
states by using the same technique. We summarize the
moduli points which exist soliton state and SGS as fol-
lowing:

a.Soliton gauge state : R =
√

2, 2 ±
√

2,
|m|√

2
,

2
√

2
|m| , 2, 1.

(4.12)
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b.Soliton state : R =
√

2, 2 ±
√

2,
|m|√

2
,

2
√

2
|m| ,

|m|
2
,

4
|m| .
(4.13)

In (4.12) and (4.13), m ∈ Z+. There is one interesting
remark we would like to point out by the end of this sec-
tion. One notes that in the second case of (4.5), instead of
specifying M2 = 2, in general we have

m2

R2 +
1
4
n2R2 = M2 (4.14)

with mn = 0. For say R =
√

2, one gets M2 = m2

2 (n = 0).
This means that we have an infinite number of massive
SGS at any higher massive level of the spectrum. One can
even explicitly write down the vertex operators of these
SGS. We conjecture that the w∞ symmetry of 2D string
theory [6,10] can be realized in these SGS [11]. Other mod-
uli points also consist of higher massive SGS in the spec-
trum.

5 Conclusion

It is hoped that all space-time symmetry of string theory
are due to the existence of gauge state in the spectrum.
The Heterotic gauge state for the 10D Heterotic string
and discrete gauge state for the toy 2D string are such ex-
amples. We have introduced soliton gauge state (SGS) for
compatified string in this paper, and have related them to
the enhenced Kaluza-Klein Kac-Moody gauge symmetry
in the theory. In many cases, especially for the massive
states, it is easier to study gauge symmetry in the gauge
state sector than in the propagating spectrum directly.
Since the discrete T-duality symmetry group for bosonic
string is the Weyl subgroup of the enhenced gauge group,

it can also be considered as implied by the existence of
SGS. It is not clear whether other discrete duality sym-
metry group can be understood in this way. Finally, it
would be interesting to consider more complicated com-
patification, e.g. orbifold and Calabi-Yau compatifications
and study the relation between SGS and duality symme-
try. works in this direction is in progress.
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